Characterizing the temporal and spatial variability of longwave infrared spectral images of targets and backgrounds

نویسندگان

  • Nirmalan Jeganathan
  • John Kerekes
  • Dalton Rosario
  • Chester F. Carlson
چکیده

Following the public release of the Spectral and Polarimetric Imagery Collection Experiment (SPICE) dataset, a persistent imaging experiment dataset collected by the Army Research Laboratory (ARL), the data were analyzed and materials in the scene characterized temporally and spatially using radiance data. The noise equivalent spectral radiance provided by the sensor manufacturer was compared with instrument noise calculated from inscene information, and found to be comparable given differences in laboratory setting and real-life conditions. The processed dataset have regular “inconsistent cubes,” specifically for data collected immediately after blackbody measurements, which were automatically executed approximately at each hour mark. Omitting these erroneous data, three target detection algorithms (adaptive coherent/cosine estimator, spectral angle mapper, and spectral matched filter) were tested on the temporal data using two target spectra (noon and midnight). The spectral matched filter produced the best detection rate for both noon and midnight target spectra for a 24-hrs period.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation

Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...

متن کامل

Modeling the potential of Sand and Dust Storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)

Due to the differences between the visible and thermal infrared images, the combination of these two types of images leads to better understanding of  the characteristics of targets and the environment. Thermal infrared images are really in distinguishing targets from the background based on the radiation differences and  land surface temperature (LST) calculation. However, their spatial resolu...

متن کامل

کاربرد طیف سنج بازتابی (nm 2500-400)به عنوان ابزاری نوین در بررسیهای کانی‌شناسی زیست‌محیطی (بررسی موردی: جنوب غرب استرالیا)

Acid and saline seeps are an increasing problem in most parts of the World and Australia as well. They are areas of bare soil or reduced crop production. Recent laboratory, field, and remote sensing studies have explored the use of visible to short – wave infrared (VIS- SWIR; 400-2500 nm) reflectance data for characterizing the mineralogy of mine wastes, surface mineralogy of acid-saline affect...

متن کامل

Target Detection Improvements in Hyperspectral Images by Adjusting Band Weights and Identifying end-members in Feature Space Clusters

          Spectral target detection could be regarded as one of the strategic applications of hyperspectral data analysis. The presence of targets in an area smaller than a pixel’s ground coverage has led to the development of spectral un-mixing methods to detect these types of targets. Usually, in the spectral un-mixing algorithms, the similar weights have been assumed for spectral bands. Howe...

متن کامل

Nonparametric Spectral-Spatial Anomaly Detection

Due to abundant spectral information contained in the hyperspectral images, they are suitable data for anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly detection performance. An anomaly detector, called nonparametric spectral-spatial detector (NSSD), is proposed in this work which utilizes the benefits of spatial features and local st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017